Geology of the Monterey Formation of California With comments on recent oil field developments

By Thomas MacKinnon

tom.mackinnon@comcast.net

Famous for silica (diatoms) Chert and Porcelanite

Widespread in California Typically 300 to 1000 m (up to 3000 m)

Diatoms: planktonic plants with siliceous shells

Fresh Diatomite "Hemipelagic"

Laminated

Bioturbated

Chert Porcelanite, Siliceous mudstone Calcareous mudstone Dolostone

silica, carbonate, and organic matter

<u>Planktonic</u>

Diatoms

Radiolaria

Coccoliths

Unshelled algae

Bacteria

Benthic

Foraminifera (predominately) Unshelled algae Bacteria Terrigenous

Quartz Feldspar Clays Other minerals

Mid to Late Miocene

- A trans-tensional continental margin
- Terrigenous material trapped on land or in nearshore basins
- High diatom productivity

Mid to Late Miocene:

- basins were isolated from terrigenous input
- Intense upwelling and biologic productivity

Weathered Diatomite

Diagenetically altered siliceous rocks

Vandenberg AFB

Imagine its all diatomaceous and at maximum burial depth

Photo By Rick Behl

1 STATE

Bedding origin

- **1.** Compositional differences
- 2. Silica migration
- 3. Carbonate migration
- 4. Turbidites

Rincon Fm

Santa Barbara

Lower Calcareous-Siliceous member

Upper calcareous-siliceous member

Clayey-siliceous member

West side, San Joaquin Valley, mainly porcelanite

Newport Back Bay

Photo By Rick Behl

Santa Cruz Island Porcelanite and chert

Phosphatic member

~29 to 18	Shift from subduction to transform.
m.y.a.	California margin subsided due to transtension
~18 m.v.a	Monterey deposition begins
20 miyia	Abrupt decrease in terrigenous material to offshore
	Increased upwelling: high productivity
	transform faulting, extension, volcanism, rotation.
~15 m.v.a.	Polar cooling, even more upwelling,
	High productivity continues
~6 m.v.a.	End of Monterey deposition
e myta	Shift to transpression
	Coast Ranges begin to form:
	Terrigenous deposition increases
	Terrigenous deposition increases.

alar C

~90% of oil produced in California was sourced from the Monterey.

Paleogeography

Billions of barrels Produced

<u>Source</u>

Kerogen type II diatoms, foraminifera, coccolithophores, dinoflagellates, and bacterial mats

Total organic carbon (TOC)

typically 3-5% by weight, 2.5% is good

Generating depths ???

5000 to 17000'

Reservoir Rocks

29 billion barrels

~10% produced from Monterey rocks

~90% produced from sandstones above, adjacent and within the Monterey

Bulk of production is from Stevens turbidite sands and overlying Plio/Pleistocene clastics

What about the 10% of oil that comes from Monterey Formation Reservoirs?

Opal CT and quartz	~2-35% porosity	
Diatomite	~ 35-70% porosity	
All rock types	< 1 md permeability	Sand ~1000 md Sandst. ~100's md

Oil stored in Matrix Produced from Natural or induced fractures

Dolostone

Fractured Reservoirs

Porcelanite and mudstone

Diatomite reservoir....few fractures

©Sara Leen, National Geographic

Diatomite reservoir South Belridge field

"Fractured" reservoir Pt Arguello field

Pt Arguello, Chert & Porcelanite

Primary, water flood; no fracking Deviated wells drilled to intersect fractures Selective perfing of highly fractured intervals Acid jobs to clean up wellbore

3600 acres

High initial production, fast decline Fluids move rapidly through natural fractures Recovery factor 6-8%??

56 wells

<u>2008</u>

2,500 BOPD

177,000,000 cum

reserves ~ 36 million

Data from CA DOG & Plains Exploration

Belridge field, Diatomite

Propped frac stimulation and waterflood (since 1977)

Steam flood in selected areas

3500 acres

Low initial production, slow decline Fluids move 0.3 to 1 meter per year Recovery factor 10%??

4129 producers, 1343 injectors, 380 steam

<u>2009</u>

40,000 BOE per day

270,000,000 cum

reserves ~ 300 million

Data from Allan and Lalicata, 2012

California Production

- Diatomite reservoirs holding fairly steady or increasing
- chert and porcelanite production has declined.
- New fields are not being discovered
- Remaining reserves with existing technologies = ~ 10 billion barrels (USGS)

What about "tight" oil?

"Vast Oil Reserve May Now Be Within Reach, and Battle Heats Up"

New York Times, Feb 2013

"Fixing California: Will fracking bonanza be allowed?

The States new law on fracking could clear the path for enormous economic growth" San Diego U-T, September 2013

OR

"The Monterey Shale: Big Deal or Big Bust?"

AAPG Explorer, November 2012

How misinformation started

"In 2011, the U.S. Energy Information Administration (EIA) published a report by INTEK Inc. which stated that the <u>Monterey</u> <u>Formation contains **15.4 billion barrels*** of technically <u>recoverable tight oil "</u></u>

Using this estimate, a "University of Southern California (USC) economic analysis...projected as much as a \$24.6 billion per year increase in tax revenue and 2.8 million additional jobs by 2020."

From Hughes, J.D., 2013, Drilling California, a reality check on the Monterey Shale

*15.4 billion barrels estimate is for unconventional "tight oil" similar to Bakken shale play; no trap is required

16 wells per sq. mile x 1752 sq. miles= 28,000 wells

28,000 wells x 550,000 BOPW = 15.4 billion barrels

Note: our taxes paid a contractor for this report. USGS would have done it right

Monterey versus Bakken "oil shales"

	<u>Bakken</u>	Monterey
тос	High	High
Porosity	2-15	2-25*
Permeability	<1md	<1md
Thickness	100-250 '	6000+
Structure	simple	complex

Development

Bakken oil and gas

Monterey oil

Other key differences

- Oil in the Monterey can migrate out as it is generated, leaving oil that is relatively immovable.
- In the Bakken, oil is generated but cannot get out without human intervention.
- Bakken oil is lighter (API gravity) and is overpressured
- Pore structure apparently is different

What happened to The "Bonanza"?

Recent drilling in non-structural traps has been unsuccessful

New estimate is 600 million, down from 15.4 Billion

revised in Spring 2014

What about the remaining "conventional" Monterey oil?

- Current Recovery factor: <10%
- Billions of barrels remain in already discovered fields, Tennyson et al, 2012, USGS

Fracking

- The first commercially successful applications by 1950.
- As of 2012, ~2.5 million hydraulic fracturing jobs performed worldwide
- more than one million of them in the United States.
- Used in vertical, deviated and horizontal wells

King, 2012, SPE

Graphic: Doug Stevens, 2012, LA Times

Mix of water, chemicals and propent "forcefully" injected into formation

Fracking itself is not the problem, it's the associated activities

- 1. Potential Contamination of Aquifers (casing failure)
- 2. Air pollution near wellsite
- 3. Utilization of Scarce Water Supplies
- 4. Earthquakes caused by Injection of Flow-back Water
- 5. Methane Leakage From Wells & pipelines

Government oversight is required

New Fracking law passed:

- Fracking procedure more tightly controlled
- Chemicals now revealed.
- If you live near a fracking site, you will receive notice
- You can request a baseline water test

Has fracking increased in California?

- Current rates about the same as "pre-recession"
- records not kept in past, will be in future
- ~1500 wells per year

Calif. Council Science and tech report, 2014

Gas versus coal

Smog – gas clearly better than coal

No particulates (e.g. sulfur (acid rain), mercury, and ash) Millions of people will live longer and be healthier

Greenhouse Gases

Replacing gas with coal will reduce greenhouse gas emissions as long as methane leakage is controlled

Long term

Replacing all coal with gas will not solve our climate problems

From Cypress coast surfboards website